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ABSTRACT

The effect of thickness on the lift and pitching moment on two
dimensional pitching airfoils at supersonic speeds ias investigated.
The airfoils considered have arbitrary symmetrical cross sections, and
the flow is supersomic throughout the flow field.

The analysis is based on a second order theory similar to the second
order theary introduced by Busemann and extended by Van Dyke. The lifting
pressure due to steady pitching is found and this ia used to calculate the
1ift due to pitching, CL s and the moment due to pitchi=ng, Cm o
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SYMBNIS

airfeil chord
: Pressure
pressure coefficient ——2>
1/2p Vv

velocity of sound in air which has been brought to
rest adiabatically

distance from airfoil leading edge to axis of pitch

arbitrary function associated with the equation of
the airfoil surface {see eq. 9)

functions associated with the form of the first order
potential function

functions agsociated with the form of the second
order potential function

functions gssociated with the form of the secornd
order 1ifting pressure

unit vectors

& distance small compared to unity

Mach number

rate of pitch

a function associated with the airfoil surface
n-eé stream velocity

tine

rectangular coordinates

rectangular coordinates

angle of attack
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adiabatic exponent

thickness parameter (see eq. 7)
characteristic coordinates

second order potential function

first arder perturbation potential function
second order perturbation potemtial function

auxiliary functions used in finding the second
order potential function

velocity vector

normal force
pitching moment

force coefficient _ L
* IV
pitching moment coefficient _ n
1/2 p V° &
- a CL
(%)
q—eo0
=3c,
a(q c )
q—»0
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INTRODUCTION

The development of the linearized theory of supersonic flow .as
permitted a first order evaluation of a number of stability derivatives.
Second order theories similar to the one introduced by Busemann (ref,l)
and extended by Van Dyke (ref.2 and 3) offer possibilities of obtaining
second order evaluations of certain stability derivatives, such as 1ift
and moment due to steady vitching, and 1ift and momer. ‘e to constant
rate of change of angle of attack.s The determinatior of the damping in
roll (in ref. ) for certain airfoil$ is an example of the use of a second
order theory to obtain stability derivatives.

In this paper a second order theory is developed for two dimensional
pitching airfoils at supersonic speeds, This theory yields an expression
for the lifting pressure due to steady pitching which enables the stability
derivatives C, (1ift due td pitching) and C, (moment due to pitching) to

be calculated,? The airfoils considered here ‘have arbitrary symmetrical
cross sections; however, the analysis can easily be extended to include air-
folls with/unsymetric&l cross sections,

The partial differential equation for airfoils with a steady pitching

 velocity is expressible in a form independent of tims, Work by Milton D,

Van Dyke (ref. 2 and 3) indicates that second order solutions of the
partial differential equation of steady supersonic flow can be obtained by
iterative methods. The equation considered here is quite similar to,
though not the same as, the equagtion of steady supersonic flow, We shall
assume that the second order solution can be obtained by the use of
iterative methods,

It will also be assumed that the characteristié¢s are the same for the
first and the second order solutions (this assumption was made if ref, 2
and 3), For steady plane flow the second order solntion (ref. 2) found by
using an iterative method based on the preceding assumption yields the
correct second order pressure of the Busemann second order theory. Un-
fortunately, no such justificatioz of this assumption is known to the
authors for the flow associated with pitching airfoils.

ANALYSIS

The Partial Differential ¥quation: The partial differential equation
to be used in the following analysis is a special case of the two dimensional

time dependent equation for the potential function of a non-viscous compressgible
flvid, This equation is (see ref, L)

' 2
32 (éx x *éz 2 ) 'étt "éxb §x°x° * 2§x 6: §x z*ézi .ézo zof-

o 0 o0

2§x §x t* 2iz §zo t (1)

(<] o] 0
2 2 2
= - [1) @ 2+8, 2+ 28,)/2]
(¢] o
This equation is associated with axes fixed in space, ¥or the present
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problem it is convenient to express the differential equation in terms

of a set of axes which are fixed to the airfoil, Since an airfoil with

a constant rate of pitch can be considered as flying in 3 circular flight
path with a constant speed, the axes fixed to the airfoil must rotate yith
respect to the stationary axes with a constant angular velocity q. The
relations between the two sets of coordinates, which are illustrated in
fige 1, are

x = x, cos qt + 3, sin qt (a)

z=V/q - X, sin qt + z_ cos qt (b) (2)
The flow over an airfoil with a constamt rate of pitch is steady, thus
in the new coordinate system the partial dertvatives with respect to time

v1ill be zero in the present problem. In the axes attached to the airfoil
equation (1) is to the second order

23 8 =[-8 (S _+F,) 2B wlqF, -

2 d P S+l F ] /Y )

XXX

i?)l. Pressure Relatian: The time dependenit pressure relation is (from
ref, _
- [0, -8 1 (82 PH{e8 e} g, )-
L
(Hz §2/v )
(o]
In the axes attached to the airfoil the preceding ejquation becomes
G, ~(28) (528 /v2)~(§,2/v2)*(2 a zé,/vz)-(e ax, 7))
Eqs. (3) and (L) will be used in the following analysis,

Solution by Iteration: It will be assumed tha eq. (3) can be solved
by an iteration procedure., The first order solution is taken as the first

approxipation to the sciution of e3., {3)s The first order differential
equation is obtained by neglecting the second order twrms in eq. (3), and
it is given by

-2, =0 (5)

———



Fig | = Stationary and moving oxes.
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It is assumed that the second approximation can be found by
substituting the first order solution into the right side of eq.
(3) am snlving the resulting nonhomogeneous aquation, which fram
eq. (3) and (5) is

B2 W ¥y = (M B B s 2B ax g,
wag, - qzg_+ Mg g+

22 g g+ M0, G | A (6)

The solution of eq. (6) will be referred to as the second order
solution.

Elimination of Terms: It is helpful to investigate the type
of solution obtained from eq., (6)s The first order equation will be
of the form

g=a gy (x,2) *+ q 82(1’2) + ‘83(1’2)

where € is a thickness parameter and where a, q, and € are small compared
‘to wnity., It follows from the preceding expression and eqe (6) that the
second arder solution will be of the form

"*- . h.l('x,Z) + qahz(x,z) +¢2h;('x,z's +‘aqhh(x,a)+
a€ hs'(x,z) + q€ h6(x,z)

The terms azhl(x,Z), ¢2h3(x,z) N and a € hs(x,z) are

independent of the rate of pitch; thus they do not captribute to the
1ifting pressure due to the pitching motion of the airfoil*, Since tais

paper is concerned only w%th the lii‘tins pressure due to the pitching,
all terms of the forms a“h(x,z) , & h(x,s) , and aeh(x,z)
can be neglected in the ensuing analysis,

The following argument shows that q2 b, (x, s) and aqhh(x,z)

do not contribute to the 1ifting pressure, The thickness parameter, €,
i8s not present; therefore, the airfoil can be considered a flat plate
insofar as these terms are concerned, If the potential of the flow on
the upper surface of a flat plate is expressed as-

$(a, q) = agy + g, + a2h1 + aghy+ q2h2
the potential on the lower surface is given by
2
$(-a, -q)--asl-qsz*azbl+aqhh+qh2
the potential difference is
' Ad=2ag +2e,

* The terms ah (x, z), and a(a:ﬁ(x, z) are associated with steady two
dimen:(:ic;na.l ersonic flow can be found by use of eq. (U6) in
ref, (2 :
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Since for the flat plate the pressure difference between the uppor and
lower surface can he found directly from the potential difference the
terms a q hh and q h2 do not contribute to the lifting pressure,

The remaining term qehg (x ,%) will be fougd by use of eq. (6),
neglecting all expressions multiplied a<, a€, q°, €, and aq,

A further consideration of the form of the solutiam indicates that
the second arder lifting pressure is linear in the thickness parameter.
This can be established by considering a first order solution of the
form

g=ag(xz)+€ g (x,2) ¢+ € (x,2)
The aecpnd order lifting pressure will be of the form
Acp -[h q x/(p V)1+ €, I, (x) + qe, I, (x)

This equation is linear iné, and&,; thus the 1lifting pressure for :
various known thickness distributIons can be added to obtain the liftipg
pressure for new thickness di stributions, For the two dimensional airfoil
this is not of much value for determining analgtical colutions, since we
shall determine the solution for an a?bitrary thickness distributios.
This linearity is also true, however, for three dimensional airfoils, and
for these it should prove quite useful.

Boundary Copditionw: Physical considerations require that the flow be
tangent to the surface of the airfoil, and that all velocity perturbations
vanish upstream of the airfoil., These boundary conditions may be expressed
mathematically as:

g(x,z)=0 upstream of the airfoills
V(x, z) =0 leading edge Mach sheet
and
o ys=0

where 8(x,z) = O i8 the equation of the surface of the airfoil.
The equation of the surface o.' the airfoil may alsc be expressed as
z =€f(x)

Thus
Us = - 1€df/ox + K

Since the velocity, », can be written as
w=i(V-sqaed +¥)sKkax+ g, +¥,)

it follows that the boundary condition ca the body surface is
-(V -2q + ¢ 0#1) ef_+ g, *fz" +qx=0

n




Thus the boundary conditions for the first order 8solution are
@(x,z) = O upstream of the airfoiYs leading edge Mach sheet, and

d' =-qx+VeL (8)

The bomda.ry conditions for the second order solytion are
¥(x,z2) = 0 upstream of the airfoil’s leading edge Mach sheet, amt

-¢x= ef, -cfdz
42 =0

For the airfoils considered here the first order velocity components
are discontinuous across the Mach sheei from the leading edge.

Y,

z =0 (9)

Z =0

To evaluate the effect on the second order solution of the dis- -
contimiities in the first order velocity components, we shall assume the
Mach sheet from the leading edge to have a small thicknsss, Within this
Mach sheet the first order velocity components will be made continuous
so that the discontinuities through it are replaced by continuous
functions, This process is illustrated in fig. (2) for the wvelocity
component in the free stream direction. The effect of the discontimaities
on the cocond order solution will be found by obtaining the second order
solution within the Mach sheet and then letting the thickness approach
zero, This is the same procedure followed in ref, (4) for rolling airfsils.

Only the Mach sheet above the airfoil will be considered since the Mach
sheets above and below the airfoil are of the same form, Since they depend
only on the initial slope of the airfoil, the discontinuities in the first
order velocity components through the leading edge Mach sheet above the
airfoil will be the same as those through the Mach sheet above a fiat
pitching airfoll with a constant angle of attack of the amount - €.

The first order potential function for the flow over the upper surface
of a flat pitching airfoil at an angle of attack -~ € is given by

¢ = [alx - p2)°/2 - Ve (x - p2) - ad®/2 -Vaa] / p (10)
where the airfoil is approximately in the z = O plane,

The discontimuities in the first order velocity components through
the leading edge Mach sheet above the airfoil are from eqe. (10).

AP, =-ad/B -Ve/p
A¢z =qd + Ve
It will be assuned that the Mach sheet has a amall thickness (see £ig.2-b).
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a. Leading Edge ‘Mach Sheet b. Leading Edge Mach Sheet
With Zero Thickness With Assumed Thickness

X=él. i=62.*l

x2p2

c. Discontinuity in ¢ Across d. Plot Of ¢, Across Leading

Leading Edge Mach Sheet Edge Mach Sheet With
Along The Line Z=2, Assumed Thickness Along
The Line Z=2Z,

Fig. 2 An illustration of removing the discontinuity in ¢
across the leading edge Mach sheet by assuming
the Mach sheet to hove thickness.
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The velocity components within the sheet, will be defined as
g = -(qd +v&)(x-ps+a+ )/ ( f8)

g, = (ad +Ve) (x-Be+def)/ { (1)

where { is the thickness of the Mach sheet in the x direction, Note that
within the Mach sheet

-52¢n|¢dzz-0.

and that the velocity components are contimuous functions in the neighbor-
hood of it.

From eq, (6) and (11) the differential equation within the Mach sheet
is

2 -
-p2 VY, - [2 ad( v+1)qe(x-pz+ds+f) (p2 {2)] + [zn q‘x/{-l...
[2 M qep z/(ﬁzl)]; [que (x-pz+d+f)/ [] (12)

It is convenient to express eq, (12) in terms of variables which lie
along the characteristics, Let

AT
N=x+Bz
In terms of the new coardinates ({, 7 ) eq. (12) becames
Vo -Latr+ 1) actes a v i/ st )] -Plac&e a v /™) -
[ ae (&+9) /G 820] -[¥ae (-&)/c08" 1))
This equation can be integrated to yield
y- - [2dHh(Y +1) qe/ (b g4 12_] Grde+f)dé dy
[que /(s g2 {)]_[f(é\ d+ f) dday- [’ qe/k p gﬂ&*y)dﬁdq-
'[que/(hﬁl‘t)] f f (7-&) aay
The potential on the downstream side of the Mach sheet can be found by
evaluating the integrals in the preceding equation and taking the limit as

—.0.

The value of the discontimuity in the second order potential function
across re lpading edge Mach sheet is (from the above equation).
x

= - M2 qe £'(-d) [M x+ (2« ﬂz)d] ﬂz/(2$l‘) (13)
= pz-— d
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Solution of the Partial Differential Equation: The part of the
second order potertial function which yielgs the 1ifting pressgre
due to the pitching motica will now be determined, The determinations
of the potemtials over the upper and lower surfaces are similar; there-
fore, only the flow over the upper surface will be considered.in detail,

The first order solution is
g0 x-p2p)]-[verx - gy g]- /ey

It follows from eq. (6) and (1) that the second order potential
function mast satisfy the nonhomogeneous equation

{ . 2 .
- an‘ 7’“ - Hzcu {f (x - Bz) - [Hz(y + 1)/BJ@: - Bz)¢ (x_.gz)q(.ls)

' (x - pz)]o 2 (px + 3) £ (x- Bz) / B}
where the primes degote derivatives with respect to (x - Bz), and tihe
e, a3, a6, and q  terms have been neglecteds By inspection a partic-
ular solution of eq. (15) is found to be
¥, = ¥ qe {- [= £(x 8 2)/(2 B)]+[wP(r + 1)a(x -pa)e’ (x-pa)/(2p7)]t
: (16)
#f-2 x pz £'(x - p2) + (8- 1) 2% (x-ps)e(%1)ast(x-p2)/p] /(2ﬁ2)}

The solution of eq. (15), ), consists of a particular 1ntegra1,-¢r1,
plus a complementary function, y,, which mst be found o that ¥
satisfies the boundary condit ong given by eq, (9) and (14). Hence ;(fz
must satisfy :

2
-p (Vz)n * (i&:?)zz -0
and the following boundary conditioms: p

=¥l -7
1,2 x-ﬁz-drlx-ﬁz-d 1

a*Z/azlz -O'ay/azlz =0 'aYI/a"

x=f3 -d
(17)

g =0

<[ac/esd] { ¢ s(phoapP0)xe’ (x><(1+92-2p“)r(x>}(1a)

By inspection the complementary function is found to be .

¥, - [ae /o™ ]{[ v - (6 w22 1)] (x - pr)ecape) o
2

(2« 3%« g2 - fo-p £(\) @
-4

15
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The desired solution is
V'*l*’z' [Q‘/(aﬁh)J{"?("zY*l '52) ﬁxlf' (x~Bs)-
MZ(M2 2) p2 ‘I2 f(x-ﬁz)#[-}(a pz+HhY(x_pz) o

x -fz (20)
(8% + 2 §%- 1) (x - po)] £(x - pa) « [ v + 3 plap?- %/‘ f(x)c»}

Eq'; (20) is the part of the second order potential function which
yields the entire second order contribution to the lifting pressure due to

pitChingo

Lifting Pressure: The 1lifting pressure distribution can be expressed
as

c --cl +C
3 P upper Pliower
surface surface

From eq. (4) and (20) it follows that for symmetrical airfoils the lifting
pressure distribution is

be; = - [ua/@v))[x +{‘/(2a3)} { iy + plo2p?e 1>xr'(x>-u2f<x>} (21)

Fig. (3) presenis the lifting pressure distribution on a ten per cent
thick wedge pitching about the ¢/2 point for various Mach numbers,

Fig. (L) presents the pressure distribution on a ten per cent wedge at
Mach number 1.5 for various positions of the axis of pitch.

Fig. (5) presents the 1ifting pressure distribution on a five per cent
thick airfoil with a parabolic cross section pitching about the c/2 point
for various Mach numbers,

Fig. (6) presents the 1ifting pressure distribution on a.five per
cent thick airfoil with a parabolic cross section at Mach number 1.5 for
various positions of the axis of pitch.

Stability Derivatives: The effect of thickness on the 1lift and
moment, C; and C_ , Que to steady pitehing can be found by use of eq. (2.).

The stabilgty derisatives CI. and C can be expressed as

%y " [acL/a{qcmv)}] q—»0 = [1/ qc2/<zv% f:-d ACy, &

c=-d
C. 3
m, = [acm/a{qc/(zv) ]q_’o- - [1/ {qc /(ZV)}Id xAc, dx

1€
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Fig. 3— The lifting pressure distribution on a ten percent thick
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o} 0.5 1.0

Fig. 4 The lifting pressure distribution on o ten percent thick
wedge of Mach number 1.5 for various positions of
the oxis of pitch.
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Fig. 5 The lifting pressure distribution on o five percent thick
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From the preceding relations and eq. (21) the C, and the C, of an
airfoil are a "q

¢ = 8a/(pe) - bfp -[ie /31‘]{[»:‘* . +(32-1)2J[(1-d/c)/CJ Loy -

I c-d _ . (22)
[ v o622+ uz]f_d [r(¢?/c] d¢}
wa o, = -[8/%) [1-3a%+3d2] -
e/ { [ty w5202] [2-are)?7e] 2y - (23)

[zx‘* v+ 2082 1)+ nzlf [cf(d')/cjj dé}

Bq. (23) indicates that the effeci of thckness on the cll is zero for an
airfoil pitchipg about the ¢/2 point with a thickness distribution
which is chord-wise symmetrical with respect to the mid point,

Fig. 7 through 10 present the variation of thé for a ten )Q'fcaxrt
thick wedge and a five per cent parabolic airfoil with3 Mach number and the
position of the axis of pitch, Fig. 7 and 9 indicate that for d = O the
thickness decreases the cL of a wedge airfoil and Imereases the OL for

a pu'abolic airfoil. e

Fig. 11 through 1i present the variation of the C m- a ten per cemt
thick wedge and a five per cent parabolic airfoil wit Mach number and
the position of the axis of pitch, Fig. 11 snd 13 inditate that for d =0
the ckness decreases the c. for & wedge airfoil and increases the C

for a parabolic airfoil, _ 2
CONCLUDING REMARKS

The airfoils considered in tids paper have symmetrical thickness
distributions, But since the flow over the upper and lower surfaces of
the airfolls treated hére are indepencent of each other, the asrodynamic
properties due to pitching of airfoils with unsymmetrical thickness
distributions can eazily be determined from the results obtained here.

The 1limitations of the Busemann second order theory have been
investigated (see ref, 5) Since the theory contained in the present paper_
is closely associated with the Busemann second order theary, it seems likely
that the results presented herein hgve similar limitations,
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